Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
covid:unpublished [2020/12/24 20:16]
biogridadmin
covid:unpublished [2021/01/08 17:06]
biogridadmin
Line 16: Line 16:
 |  **888800000010** ​ |  **[[https://​doi.org/​10.1101/​2020.03.15.992883|10.1101/​2020.03.15.992883]]** ​ |  Joyce MG (2020) ​ | **[[https://​thebiogrid.org/​221197/​publication|A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein]]** ​ | |  **888800000010** ​ |  **[[https://​doi.org/​10.1101/​2020.03.15.992883|10.1101/​2020.03.15.992883]]** ​ |  Joyce MG (2020) ​ | **[[https://​thebiogrid.org/​221197/​publication|A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein]]** ​ |
 |  **888800000011** ​ |  **[[https://​doi.org/​10.1101/​2020.03.16.993386|10.1101/​2020.03.16.993386]]** ​ |  Gao Y (2020) ​ | **[[https://​thebiogrid.org/​221198/​publication|Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral drug target]]** ​ | |  **888800000011** ​ |  **[[https://​doi.org/​10.1101/​2020.03.16.993386|10.1101/​2020.03.16.993386]]** ​ |  Gao Y (2020) ​ | **[[https://​thebiogrid.org/​221198/​publication|Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral drug target]]** ​ |
-|  **888800000012** ​ |  **[[https://​doi.org/​10.1101/​2020.03.31.019216|10.1101/​2020.03.31.019216]]** ​ |  Liang Q (2020) ​ | **[[https://​thebiogrid.org/​221199/​publication|Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis]]** ​ | 
 |  **888800000013** ​ |  **[[https://​doi.org/​10.1101/​2020.04.15.042085|10.1101/​2020.04.15.042085]]** ​ |  Bestle D (2020) ​ | **[[https://​thebiogrid.org/​221402/​publication|TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets]]** ​ | |  **888800000013** ​ |  **[[https://​doi.org/​10.1101/​2020.04.15.042085|10.1101/​2020.04.15.042085]]** ​ |  Bestle D (2020) ​ | **[[https://​thebiogrid.org/​221402/​publication|TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets]]** ​ |
-|  **888800000016** ​ |  **[[https://​doi.org/​10.1101/​2020.04.14.042010|10.1101/​2020.04.14.042010]]** ​ |  Chi X (2020) ​ | **[[https://​thebiogrid.org/​221405/​publication|Humanized Single Domain Antibodies Neutralize SARS-CoV-2 by Targeting Spike Receptor Binding Domain]]** ​ | 
 |  **888800000018** ​ |  **[[https://​doi.org/​10.1101/​2020.04.19.049643|10.1101/​2020.04.19.049643]]** ​ |  Zeng X (2020) ​ | **[[https://​thebiogrid.org/​221566/​publication|Blocking antibodies against SARS-CoV-2 RBD isolated from a phage display antibody library using a competitive biopanning strategy]]** ​ | |  **888800000018** ​ |  **[[https://​doi.org/​10.1101/​2020.04.19.049643|10.1101/​2020.04.19.049643]]** ​ |  Zeng X (2020) ​ | **[[https://​thebiogrid.org/​221566/​publication|Blocking antibodies against SARS-CoV-2 RBD isolated from a phage display antibody library using a competitive biopanning strategy]]** ​ |
-|  **888800000019** ​ |  **[[https://​doi.org/​10.1101/​2020.04.23.057265|10.1101/​2020.04.23.057265]]** ​ |  Peng Q (2020) ​ | **[[https://​thebiogrid.org/​221567/​publication|Structural and biochemical characterization of nsp12-nsp7-nsp8 core polymerase complex from COVID-19 virus]]** ​ | 
 |  **888800000020** ​ |  **[[https://​doi.org/​10.1101/​2020.04.22.046565|10.1101/​2020.04.22.046565]]** ​ |  Liu Y (2020) ​ | **[[https://​thebiogrid.org/​221568/​publication|Functional and Genetic Analysis of Viral Receptor ACE2 Orthologs Reveals Broad Potential Host Range of SARS-CoV-2]]** ​ | |  **888800000020** ​ |  **[[https://​doi.org/​10.1101/​2020.04.22.046565|10.1101/​2020.04.22.046565]]** ​ |  Liu Y (2020) ​ | **[[https://​thebiogrid.org/​221568/​publication|Functional and Genetic Analysis of Viral Receptor ACE2 Orthologs Reveals Broad Potential Host Range of SARS-CoV-2]]** ​ |
 |  **888800000021** ​ |  **[[https://​doi.org/​10.1101/​2020.04.21.053017|10.1101/​2020.04.21.053017]]** ​ |  Walker A (2020) ​ | **[[https://​thebiogrid.org/​221569/​publication|Enisamium is a small molecule inhibitor of the influenza A virus and SARS-CoV-2 RNA polymerases]]** ​ | |  **888800000021** ​ |  **[[https://​doi.org/​10.1101/​2020.04.21.053017|10.1101/​2020.04.21.053017]]** ​ |  Walker A (2020) ​ | **[[https://​thebiogrid.org/​221569/​publication|Enisamium is a small molecule inhibitor of the influenza A virus and SARS-CoV-2 RNA polymerases]]** ​ |
Line 33: Line 30:
 |  **888800000037** ​ |  **[[https://​doi.org/​10.1101/​2020.05.13.092478|10.1101/​2020.05.13.092478]]** ​ |  Chiodo F (2020) ​ | **[[https://​thebiogrid.org/​222217/​publication|Novel ACE2-Independent Carbohydrate-Binding of SARS-CoV-2 Spike Protein to Host Lectins and Lung Microbiota]]** ​ | |  **888800000037** ​ |  **[[https://​doi.org/​10.1101/​2020.05.13.092478|10.1101/​2020.05.13.092478]]** ​ |  Chiodo F (2020) ​ | **[[https://​thebiogrid.org/​222217/​publication|Novel ACE2-Independent Carbohydrate-Binding of SARS-CoV-2 Spike Protein to Host Lectins and Lung Microbiota]]** ​ |
 |  **888800000038** ​ |  **[[https://​doi.org/​10.1101/​2020.05.12.091298|10.1101/​2020.05.12.091298]]** ​ |  Seydoux E (2020) ​ | **[[https://​thebiogrid.org/​222218/​publication|Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual]]** ​ | |  **888800000038** ​ |  **[[https://​doi.org/​10.1101/​2020.05.12.091298|10.1101/​2020.05.12.091298]]** ​ |  Seydoux E (2020) ​ | **[[https://​thebiogrid.org/​222218/​publication|Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual]]** ​ |
-|  **888800000039** ​ |  **[[https://​doi.org/​10.1101/​2020.05.21.107565|10.1101/​2020.05.21.107565]]** ​ |  Zang J (2020) ​ | **[[https://​thebiogrid.org/​222219/​publication|Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement]]** ​ | 
 |  **888800000040** ​ |  **[[https://​doi.org/​10.1101/​2020.05.12.092171|10.1101/​2020.05.12.092171]]** ​ |  Zhou X (2020) ​ | **[[https://​thebiogrid.org/​222220/​publication|Structure of SARS-CoV-2 main protease in the apo state reveals the inactive conformation]]** ​ | |  **888800000040** ​ |  **[[https://​doi.org/​10.1101/​2020.05.12.092171|10.1101/​2020.05.12.092171]]** ​ |  Zhou X (2020) ​ | **[[https://​thebiogrid.org/​222220/​publication|Structure of SARS-CoV-2 main protease in the apo state reveals the inactive conformation]]** ​ |
 |  **888800000041** ​ |  **[[https://​doi.org/​10.1101/​2020.06.17.156455|10.1101/​2020.06.17.156455]]** ​ |  Stukalov A (2020) ​ | **[[https://​thebiogrid.org/​222410/​publication|Multi-level proteomics reveals host-perturbation strategies of SARS-CoV-2 and SARS-CoV]]** ​ | |  **888800000041** ​ |  **[[https://​doi.org/​10.1101/​2020.06.17.156455|10.1101/​2020.06.17.156455]]** ​ |  Stukalov A (2020) ​ | **[[https://​thebiogrid.org/​222410/​publication|Multi-level proteomics reveals host-perturbation strategies of SARS-CoV-2 and SARS-CoV]]** ​ |
 |  **888800000042** ​ |  **[[https://​doi.org/​10.1101/​2020.06.05.135921|10.1101/​2020.06.05.135921]]** ​ |  Bertoglio F (2020) ​ | **[[https://​thebiogrid.org/​222602/​publication|SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface]]** ​ | |  **888800000042** ​ |  **[[https://​doi.org/​10.1101/​2020.06.05.135921|10.1101/​2020.06.05.135921]]** ​ |  Bertoglio F (2020) ​ | **[[https://​thebiogrid.org/​222602/​publication|SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface]]** ​ |
 |  **888800000043** ​ |  **[[https://​doi.org/​10.1101/​2020.06.05.135699|10.1101/​2020.06.05.135699]]** ​ |  Moustaqil M (2020) ​ | **[[https://​thebiogrid.org/​222603/​publication|SARS-CoV-2 proteases cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species and the search for reservoir hosts.]]** ​ | |  **888800000043** ​ |  **[[https://​doi.org/​10.1101/​2020.06.05.135699|10.1101/​2020.06.05.135699]]** ​ |  Moustaqil M (2020) ​ | **[[https://​thebiogrid.org/​222603/​publication|SARS-CoV-2 proteases cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species and the search for reservoir hosts.]]** ​ |
-|  **888800000045** ​ |  **[[https://​doi.org/​10.1101/​2020.06.05.134114|10.1101/​2020.06.05.134114]]** ​ |  Daly JL (2020) ​ | **[[https://​thebiogrid.org/​222653/​publication|Neuropilin-1 is a host factor for SARS-CoV-2 infection]]** ​ | 
 |  **888800000046** ​ |  **[[https://​doi.org/​10.1101/​2020.06.17.158121|10.1101/​2020.06.17.158121]]** ​ |  Cubuk J (2020) ​ | **[[https://​thebiogrid.org/​222654/​publication|The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA]]** ​ | |  **888800000046** ​ |  **[[https://​doi.org/​10.1101/​2020.06.17.158121|10.1101/​2020.06.17.158121]]** ​ |  Cubuk J (2020) ​ | **[[https://​thebiogrid.org/​222654/​publication|The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA]]** ​ |
-|  **888800000048** ​ |  **[[https://​doi.org/​10.1101/​2020.06.02.130161|10.1101/​2020.06.02.130161]]** ​ |  Hanke L (2020) ​ | **[[https://​thebiogrid.org/​222656/​publication|An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction]]** ​ | 
-|  **888800000049** ​ |  **[[https://​doi.org/​10.1101/​2020.06.17.156471|10.1101/​2020.06.17.156471]]** ​ |  Conceicao C (2020) ​ | **[[https://​thebiogrid.org/​222704/​publication|The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins]]** ​ | 
 |  **888800000050** ​ |  **[[https://​doi.org/​10.1101/​2020.06.07.138677|10.1101/​2020.06.07.138677]]** ​ |  Luan X (2020) ​ | **[[https://​thebiogrid.org/​222705/​publication|Structure Basis for Inhibition of SARS-CoV-2 by the Feline Drug GC376]]** ​ | |  **888800000050** ​ |  **[[https://​doi.org/​10.1101/​2020.06.07.138677|10.1101/​2020.06.07.138677]]** ​ |  Luan X (2020) ​ | **[[https://​thebiogrid.org/​222705/​publication|Structure Basis for Inhibition of SARS-CoV-2 by the Feline Drug GC376]]** ​ |
-|  **888800000051** ​ |  **[[https://​doi.org/​10.1101/​2020.06.02.129098|10.1101/​2020.06.02.129098]]** ​ |  Lv Z (2020) ​ | **[[https://​thebiogrid.org/​222706/​publication|Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody]]** ​ | 
 |  **888800000052** ​ |  **[[https://​doi.org/​10.1101/​2020.06.06.137513|10.1101/​2020.06.06.137513]]** ​ |  Lou Y (2020) ​ | **[[https://​thebiogrid.org/​222707/​publication|Cross-neutralization antibodies against SARS-CoV-2 and RBD mutations from convalescent patient antibody libraries]]** ​ | |  **888800000052** ​ |  **[[https://​doi.org/​10.1101/​2020.06.06.137513|10.1101/​2020.06.06.137513]]** ​ |  Lou Y (2020) ​ | **[[https://​thebiogrid.org/​222707/​publication|Cross-neutralization antibodies against SARS-CoV-2 and RBD mutations from convalescent patient antibody libraries]]** ​ |
 |  **888800000054** ​ |  **[[https://​doi.org/​10.1101/​2020.06.16.155812|10.1101/​2020.06.16.155812]]** ​ |  Li J (2020) ​ | **[[https://​thebiogrid.org/​222709/​publication|Crystal structure of SARS-CoV-2 main protease in complex with a Chinese herb inhibitor shikonin]]** ​ | |  **888800000054** ​ |  **[[https://​doi.org/​10.1101/​2020.06.16.155812|10.1101/​2020.06.16.155812]]** ​ |  Li J (2020) ​ | **[[https://​thebiogrid.org/​222709/​publication|Crystal structure of SARS-CoV-2 main protease in complex with a Chinese herb inhibitor shikonin]]** ​ |
 |  **888800000056** ​ |  **[[https://​doi.org/​10.1101/​2020.06.16.154708|10.1101/​2020.06.16.154708]]** ​ |  Hanson QM (2020) ​ | **[[https://​thebiogrid.org/​223039/​publication|Targeting ACE2-RBD interaction as a platform for COVID19 therapeutics:​ Development and drug repurposing screen of an AlphaLISA proximity assay]]** ​ | |  **888800000056** ​ |  **[[https://​doi.org/​10.1101/​2020.06.16.154708|10.1101/​2020.06.16.154708]]** ​ |  Hanson QM (2020) ​ | **[[https://​thebiogrid.org/​223039/​publication|Targeting ACE2-RBD interaction as a platform for COVID19 therapeutics:​ Development and drug repurposing screen of an AlphaLISA proximity assay]]** ​ |
-|  **888800000057** ​ |  **[[https://​doi.org/​10.1101/​2020.06.09.20127050|10.1101/​2020.06.09.20127050]]** ​ |  Gniffke EP (2020) ​ | **[[https://​thebiogrid.org/​223040/​publication|Plasma from recovered COVID19 subjects inhibits spike protein binding to ACE2 in a microsphere-based inhibition assay]]** ​ | 
-|  **888800000060** ​ |  **[[https://​doi.org/​10.1101/​2020.07.01.182659|10.1101/​2020.07.01.182659]]** ​ |  Lu J (2020) ​ | **[[https://​thebiogrid.org/​223093/​publication|High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity]]** ​ | 
-|  **888800000062** ​ |  **[[https://​doi.org/​10.1101/​2020.07.04.187757|10.1101/​2020.07.04.187757]]** ​ |  Yurkovetskiy L (2020) ​ | **[[https://​thebiogrid.org/​223095/​publication|Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant]]** ​ | 
 |  **888800000063** ​ |  **[[https://​doi.org/​10.1101/​2020.07.31.230730|10.1101/​2020.07.31.230730]]** ​ |  Cao W (2020) ​ | **[[https://​thebiogrid.org/​223096/​publication|Biomechanical Characterization of SARS-CoV-2 Spike RBD and Human ACE2 Protein-Protein Interaction]]** ​ | |  **888800000063** ​ |  **[[https://​doi.org/​10.1101/​2020.07.31.230730|10.1101/​2020.07.31.230730]]** ​ |  Cao W (2020) ​ | **[[https://​thebiogrid.org/​223096/​publication|Biomechanical Characterization of SARS-CoV-2 Spike RBD and Human ACE2 Protein-Protein Interaction]]** ​ |
 |  **888800000064** ​ |  **[[https://​doi.org/​10.1101/​2020.07.24.219857|10.1101/​2020.07.24.219857]]** ​ |  Esparza TJ (2020) ​ | **[[https://​thebiogrid.org/​223097/​publication|High Affinity Nanobodies Block SARS-CoV-2 Spike Receptor Binding Domain Interaction with Human Angiotensin Converting Enzyme]]** ​ | |  **888800000064** ​ |  **[[https://​doi.org/​10.1101/​2020.07.24.219857|10.1101/​2020.07.24.219857]]** ​ |  Esparza TJ (2020) ​ | **[[https://​thebiogrid.org/​223097/​publication|High Affinity Nanobodies Block SARS-CoV-2 Spike Receptor Binding Domain Interaction with Human Angiotensin Converting Enzyme]]** ​ |
Line 55: Line 44:
 |  **888800000066** ​ |  **[[https://​doi.org/​10.1101/​2020.07.13.201517|10.1101/​2020.07.13.201517]]** ​ |  Davies JP (2020) ​ | **[[https://​thebiogrid.org/​223099/​publication|Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus non-structural proteins identifies unique and shared host-cell dependencies]]** ​ | |  **888800000066** ​ |  **[[https://​doi.org/​10.1101/​2020.07.13.201517|10.1101/​2020.07.13.201517]]** ​ |  Davies JP (2020) ​ | **[[https://​thebiogrid.org/​223099/​publication|Comparative multiplexed interactomics of SARS-CoV-2 and homologous coronavirus non-structural proteins identifies unique and shared host-cell dependencies]]** ​ |
 |  **888800000067** ​ |  **[[https://​doi.org/​10.1101/​2020.07.31.229781|10.1101/​2020.07.31.229781]]** ​ |  Alitongbieke G (2020) ​ | **[[https://​thebiogrid.org/​223100/​publication|Study on beta-Chitosan against the binding of SARS-CoV-2S-RBD/​ACE2]]** ​ | |  **888800000067** ​ |  **[[https://​doi.org/​10.1101/​2020.07.31.229781|10.1101/​2020.07.31.229781]]** ​ |  Alitongbieke G (2020) ​ | **[[https://​thebiogrid.org/​223100/​publication|Study on beta-Chitosan against the binding of SARS-CoV-2S-RBD/​ACE2]]** ​ |
-|  **888800000068** ​ |  **[[https://​doi.org/​10.1101/​2020.07.31.231746|10.1101/​2020.07.31.231746]]** ​ |  Glasgow A (2020) ​ | **[[https://​thebiogrid.org/​223101/​publication|Engineered ACE2 receptor traps potently neutralize SARS-CoV-2]]** ​ | 
 |  **888800000069** ​ |  **[[https://​doi.org/​10.1101/​2020.07.27.224089|10.1101/​2020.07.27.224089]]** ​ |  Beasley MD (2020) ​ | **[[https://​thebiogrid.org/​223102/​publication|Antibodies that potently inhibit or enhance SARS-CoV-2 spike protein-ACE2 interaction isolated from synthetic single-chain antibody libraries]]** ​ | |  **888800000069** ​ |  **[[https://​doi.org/​10.1101/​2020.07.27.224089|10.1101/​2020.07.27.224089]]** ​ |  Beasley MD (2020) ​ | **[[https://​thebiogrid.org/​223102/​publication|Antibodies that potently inhibit or enhance SARS-CoV-2 spike protein-ACE2 interaction isolated from synthetic single-chain antibody libraries]]** ​ |
 |  **888800000070** ​ |  **[[https://​doi.org/​10.1101/​2020.07.29.227462|10.1101/​2020.07.29.227462]]** ​ |  Gao C (2020) ​ | **[[https://​thebiogrid.org/​223103/​publication|SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors]]** ​ | |  **888800000070** ​ |  **[[https://​doi.org/​10.1101/​2020.07.29.227462|10.1101/​2020.07.29.227462]]** ​ |  Gao C (2020) ​ | **[[https://​thebiogrid.org/​223103/​publication|SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors]]** ​ |
Line 62: Line 50:
 |  **888800000075** ​ |  **[[https://​doi.org/​10.1101/​2020.07.15.204404|10.1101/​2020.07.15.204404]]** ​ |  Schmidt N (2020) ​ | **[[https://​thebiogrid.org/​223108/​publication|A direct RNA-protein interaction atlas of the SARS-CoV-2 RNA in infected human cells]]** ​ | |  **888800000075** ​ |  **[[https://​doi.org/​10.1101/​2020.07.15.204404|10.1101/​2020.07.15.204404]]** ​ |  Schmidt N (2020) ​ | **[[https://​thebiogrid.org/​223108/​publication|A direct RNA-protein interaction atlas of the SARS-CoV-2 RNA in infected human cells]]** ​ |
 |  **888800000076** ​ |  **[[https://​doi.org/​10.1101/​2020.08.03.234914|10.1101/​2020.08.03.234914]]** ​ |  Cao L (2020) ​ | **[[https://​thebiogrid.org/​223109/​publication|De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. [DEPRECATED]]]** ​ | |  **888800000076** ​ |  **[[https://​doi.org/​10.1101/​2020.08.03.234914|10.1101/​2020.08.03.234914]]** ​ |  Cao L (2020) ​ | **[[https://​thebiogrid.org/​223109/​publication|De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. [DEPRECATED]]]** ​ |
-|  **888800000077** ​ |  **[[https://​doi.org/​10.1101/​2020.07.27.223727|10.1101/​2020.07.27.223727]]** ​ |  Sacco MD (2020) ​ | **[[https://​thebiogrid.org/​223110/​publication|Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against Mpro and cathepsin L]]**  | 
 |  **888800000078** ​ |  **[[https://​doi.org/​10.1101/​2020.07.17.208959|10.1101/​2020.07.17.208959]]** ​ |  Fu Z (2020) ​ | **[[https://​thebiogrid.org/​223111/​publication|Structural basis for the inhibition of the papain-like protease of SARS-CoV-2 by small molecules]]** ​ | |  **888800000078** ​ |  **[[https://​doi.org/​10.1101/​2020.07.17.208959|10.1101/​2020.07.17.208959]]** ​ |  Fu Z (2020) ​ | **[[https://​thebiogrid.org/​223111/​publication|Structural basis for the inhibition of the papain-like protease of SARS-CoV-2 by small molecules]]** ​ |
 |  **888800000079** ​ |  **[[https://​doi.org/​10.1101/​2020.07.31.231282|10.1101/​2020.07.31.231282]]** ​ |  Tee KL (2020) ​ | **[[https://​thebiogrid.org/​223112/​publication|Purification of recombinant SARS-CoV-2 spike, its receptor binding domain, and CR3022 mAb for serological assay]]** ​ | |  **888800000079** ​ |  **[[https://​doi.org/​10.1101/​2020.07.31.231282|10.1101/​2020.07.31.231282]]** ​ |  Tee KL (2020) ​ | **[[https://​thebiogrid.org/​223112/​publication|Purification of recombinant SARS-CoV-2 spike, its receptor binding domain, and CR3022 mAb for serological assay]]** ​ |
Line 76: Line 63:
 |  **888800000089** ​ |  **[[https://​doi.org/​10.1101/​2020.08.14.250258|10.1101/​2020.08.14.250258]]** ​ |  Chen Y (2020) ​ | **[[https://​thebiogrid.org/​223467/​publication|Inhibition of Severe Acute Respiratory Syndrome Coronavirus 2 main protease by tafenoquine in vitro]]** ​ | |  **888800000089** ​ |  **[[https://​doi.org/​10.1101/​2020.08.14.250258|10.1101/​2020.08.14.250258]]** ​ |  Chen Y (2020) ​ | **[[https://​thebiogrid.org/​223467/​publication|Inhibition of Severe Acute Respiratory Syndrome Coronavirus 2 main protease by tafenoquine in vitro]]** ​ |
 |  **888800000090** ​ |  **[[https://​doi.org/​10.1101/​2020.08.09.242917|10.1101/​2020.08.09.242917]]** ​ |  Thepaut M (2020) ​ | **[[https://​thebiogrid.org/​223468/​publication|DC/​L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist]]** ​ | |  **888800000090** ​ |  **[[https://​doi.org/​10.1101/​2020.08.09.242917|10.1101/​2020.08.09.242917]]** ​ |  Thepaut M (2020) ​ | **[[https://​thebiogrid.org/​223468/​publication|DC/​L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist]]** ​ |
-|  **888800000091** ​ |  **[[https://​doi.org/​10.1101/​2020.08.07.241877|10.1101/​2020.08.07.241877]]** ​ |  Hassert M (2020) ​ | **[[https://​thebiogrid.org/​223469/​publication|mRNA induced expression of human angiotensin-converting enzyme 2 in mice for the study of the adaptive immune response to severe acute respiratory syndrome coronavirus 2]]**  | 
-|  **888800000092** ​ |  **[[https://​doi.org/​10.1101/​2020.08.09.243451|10.1101/​2020.08.09.243451]]** ​ |  Yuan S (2020) ​ | **[[https://​thebiogrid.org/​223470/​publication|Nonstructural protein 1 of SARS-CoV-2 is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA.]]** ​ | 
 |  **888800000093** ​ |  **[[https://​doi.org/​10.1101/​2020.08.18.256776|10.1101/​2020.08.18.256776]]** ​ |  Andres AD (2020) ​ | **[[https://​thebiogrid.org/​223471/​publication|SARS-CoV-2 ORF9c Is a Membrane-Associated Protein that Suppresses Antiviral Responses in Cells]]** ​ | |  **888800000093** ​ |  **[[https://​doi.org/​10.1101/​2020.08.18.256776|10.1101/​2020.08.18.256776]]** ​ |  Andres AD (2020) ​ | **[[https://​thebiogrid.org/​223471/​publication|SARS-CoV-2 ORF9c Is a Membrane-Associated Protein that Suppresses Antiviral Responses in Cells]]** ​ |
 |  **888800000094** ​ |  **[[https://​doi.org/​10.1101/​2020.08.13.249177|10.1101/​2020.08.13.249177]]** ​ |  Carrique L (2020) ​ | **[[https://​thebiogrid.org/​223473/​publication|The SARS-CoV-2 Spike harbours a lipid binding pocket which modulates stability of the prefusion trimer]]** ​ | |  **888800000094** ​ |  **[[https://​doi.org/​10.1101/​2020.08.13.249177|10.1101/​2020.08.13.249177]]** ​ |  Carrique L (2020) ​ | **[[https://​thebiogrid.org/​223473/​publication|The SARS-CoV-2 Spike harbours a lipid binding pocket which modulates stability of the prefusion trimer]]** ​ |
Line 87: Line 72:
 |  **888800000100** ​ |  **[[https://​doi.org/​10.1101/​2020.08.13.248872|10.1101/​2020.08.13.248872]]** ​ |  Wei C (2020) ​ | **[[https://​thebiogrid.org/​223479/​publication|SARS-CoV-2 manipulates the SR-B1-mediated HDL uptake pathway for its entry]]** ​ | |  **888800000100** ​ |  **[[https://​doi.org/​10.1101/​2020.08.13.248872|10.1101/​2020.08.13.248872]]** ​ |  Wei C (2020) ​ | **[[https://​thebiogrid.org/​223479/​publication|SARS-CoV-2 manipulates the SR-B1-mediated HDL uptake pathway for its entry]]** ​ |
 |  **888800000101** ​ |  **[[https://​doi.org/​10.1101/​2020.08.14.251207|10.1101/​2020.08.14.251207]]** ​ |  Heaton BE (2020) ​ | **[[https://​thebiogrid.org/​223480/​publication|SRSF protein kinases 1 and 2 are essential host factors for human coronaviruses including SARS-CoV-2]]** ​ | |  **888800000101** ​ |  **[[https://​doi.org/​10.1101/​2020.08.14.251207|10.1101/​2020.08.14.251207]]** ​ |  Heaton BE (2020) ​ | **[[https://​thebiogrid.org/​223480/​publication|SRSF protein kinases 1 and 2 are essential host factors for human coronaviruses including SARS-CoV-2]]** ​ |
-|  **888800000102** ​ |  **[[https://​doi.org/​10.1101/​2020.08.07.20169441|10.1101/​2020.08.07.20169441]]** ​ |  Johari YB (2020) ​ | **[[https://​thebiogrid.org/​223481/​publication|Production of Trimeric SARS-CoV-2 Spike Protein by CHO Cells for Serological COVID-19 Testing]]** ​ | 
 |  **888800000103** ​ |  **[[https://​doi.org/​10.1101/​2020.08.09.242867|10.1101/​2020.08.09.242867]]** ​ |  Gai J (2020) ​ | **[[https://​thebiogrid.org/​223482/​publication|A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential]]** ​ | |  **888800000103** ​ |  **[[https://​doi.org/​10.1101/​2020.08.09.242867|10.1101/​2020.08.09.242867]]** ​ |  Gai J (2020) ​ | **[[https://​thebiogrid.org/​223482/​publication|A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential]]** ​ |
 |  **888800000104** ​ |  **[[https://​doi.org/​10.1101/​2020.09.03.282103|10.1101/​2020.09.03.282103]]** ​ |  Samavarchi-Tehrani P (2020) ​ | **[[https://​thebiogrid.org/​223517/​publication|A SARS-CoV-2 - host proximity interactome]]** ​ | |  **888800000104** ​ |  **[[https://​doi.org/​10.1101/​2020.09.03.282103|10.1101/​2020.09.03.282103]]** ​ |  Samavarchi-Tehrani P (2020) ​ | **[[https://​thebiogrid.org/​223517/​publication|A SARS-CoV-2 - host proximity interactome]]** ​ |
Line 98: Line 82:
 |  **888800000112** ​ |  **[[https://​doi.org/​10.1101/​2020.09.09.287987|10.1101/​2020.09.09.287987]]** ​ |  Durdagi S (2020) ​ | **[[https://​thebiogrid.org/​223568/​publication|Near-Physiological-Temperature Serial Femtosecond X-ray Crystallography Reveals Novel Conformations of SARS-CoV-2 Main Protease Active Site for Improved Drug Repurposing]]** ​ | |  **888800000112** ​ |  **[[https://​doi.org/​10.1101/​2020.09.09.287987|10.1101/​2020.09.09.287987]]** ​ |  Durdagi S (2020) ​ | **[[https://​thebiogrid.org/​223568/​publication|Near-Physiological-Temperature Serial Femtosecond X-ray Crystallography Reveals Novel Conformations of SARS-CoV-2 Main Protease Active Site for Improved Drug Repurposing]]** ​ |
 |  **888800000113** ​ |  **[[https://​doi.org/​10.1101/​2020.09.01.277954|10.1101/​2020.09.01.277954]]** ​ |  Bartolome A (2020) ​ | **[[https://​thebiogrid.org/​223569/​publication|Angiotensin converting enzyme 2 is a novel target of the secretase complex]]** ​ | |  **888800000113** ​ |  **[[https://​doi.org/​10.1101/​2020.09.01.277954|10.1101/​2020.09.01.277954]]** ​ |  Bartolome A (2020) ​ | **[[https://​thebiogrid.org/​223569/​publication|Angiotensin converting enzyme 2 is a novel target of the secretase complex]]** ​ |
-|  **888800000114** ​ |  **[[https://​doi.org/​10.1101/​2020.08.31.274704|10.1101/​2020.08.31.274704]]** ​ |  Guo L (2020) ​ | **[[https://​thebiogrid.org/​223570/​publication|Engineered Trimeric ACE2 Binds and Locks "​Three-up"​ Spike Protein to Potently Inhibit SARS-CoVs and Mutants]]** ​ | 
 |  **888800000115** ​ |  **[[https://​doi.org/​10.1101/​2020.09.09.289488|10.1101/​2020.09.09.289488]]** ​ |  Kotani N (2020) ​ | **[[https://​thebiogrid.org/​223571/​publication|Candidate screening of host cell membrane proteins involved in SARS-CoV-2 entry]]** ​ | |  **888800000115** ​ |  **[[https://​doi.org/​10.1101/​2020.09.09.289488|10.1101/​2020.09.09.289488]]** ​ |  Kotani N (2020) ​ | **[[https://​thebiogrid.org/​223571/​publication|Candidate screening of host cell membrane proteins involved in SARS-CoV-2 entry]]** ​ |
 |  **888800000116** ​ |  **[[https://​doi.org/​10.1101/​2020.08.27.270637|10.1101/​2020.08.27.270637]]** ​ |  Flower TG (2020) ​ | **[[https://​thebiogrid.org/​223572/​publication|Structure of SARS-CoV-2 ORF8, a rapidly evolving coronavirus protein implicated in immune evasion]]** ​ | |  **888800000116** ​ |  **[[https://​doi.org/​10.1101/​2020.08.27.270637|10.1101/​2020.08.27.270637]]** ​ |  Flower TG (2020) ​ | **[[https://​thebiogrid.org/​223572/​publication|Structure of SARS-CoV-2 ORF8, a rapidly evolving coronavirus protein implicated in immune evasion]]** ​ |
Line 137: Line 120:
 |  **888800000151** ​ |  **[[https://​doi.org/​10.1101/​2020.09.30.317818|10.1101/​2020.09.30.317818]]** ​ |  Hsu AC-Y (2020) ​ | **[[https://​thebiogrid.org/​226007/​publication|SARS-CoV-2 Spike protein promotes hyper-inflammatory response that can be ameliorated by Spike-antagonistic peptide and FDA-approved ER stress and MAP kinase inhibitors in vitro]]** ​ | |  **888800000151** ​ |  **[[https://​doi.org/​10.1101/​2020.09.30.317818|10.1101/​2020.09.30.317818]]** ​ |  Hsu AC-Y (2020) ​ | **[[https://​thebiogrid.org/​226007/​publication|SARS-CoV-2 Spike protein promotes hyper-inflammatory response that can be ameliorated by Spike-antagonistic peptide and FDA-approved ER stress and MAP kinase inhibitors in vitro]]** ​ |
 |  **888800000152** ​ |  **[[https://​doi.org/​10.1101/​2020.11.05.369264|10.1101/​2020.11.05.369264]]** ​ |  Soh WT (2020) ​ | **[[https://​thebiogrid.org/​226008/​publication|The N-terminal domain of spike glycoprotein mediates SARS-CoV-2 infection by associating with L-SIGN and DC-SIGN]]** ​ | |  **888800000152** ​ |  **[[https://​doi.org/​10.1101/​2020.11.05.369264|10.1101/​2020.11.05.369264]]** ​ |  Soh WT (2020) ​ | **[[https://​thebiogrid.org/​226008/​publication|The N-terminal domain of spike glycoprotein mediates SARS-CoV-2 infection by associating with L-SIGN and DC-SIGN]]** ​ |
 +|  **888800000153** ​ |  **[[https://​doi.org/​10.1101/​2020.12.02.408153|10.1101/​2020.12.02.408153]]** ​ |  Roth A (2020) ​ | **[[https://​thebiogrid.org/​226406/​publication|LL-37 fights SARS-CoV-2: The Vitamin D-Inducible Peptide LL-37 Inhibits Binding of SARS-CoV-2 Spike Protein to its Cellular Receptor Angiotensin Converting Enzyme 2 In Vitro]]** ​ | 
 +|  **888800000154** ​ |  **[[https://​doi.org/​10.1101/​2020.11.24.20237628|10.1101/​2020.11.24.20237628]]** ​ |  Al Ahmad M (2020) ​ | **[[https://​thebiogrid.org/​226407/​publication|Development of an Optical Assay to Detect SARS-CoV-2 Spike Protein Binding Interactions with ACE2 and Disruption of these Interactions Using Electric Current]]** ​ | 
 +|  **888800000155** ​ |  **[[https://​doi.org/​10.1101/​2020.12.06.413443|10.1101/​2020.12.06.413443]]** ​ |  Svilenov HL (2020) ​ | **[[https://​thebiogrid.org/​226408/​publication|Efficient inhibition of SARS-CoV-2 strains by a novel ACE2-IgG4-Fc fusion protein with a stabilized hinge region]]** ​ | 
 +|  **888800000156** ​ |  **[[https://​doi.org/​10.1101/​2020.12.01.406116|10.1101/​2020.12.01.406116]]** ​ |  Tito A (2020) ​ | **[[https://​thebiogrid.org/​226409/​publication|A pomegranate peel extract as inhibitor of SARS-CoV-2 Spike binding to human ACE2 (in vitro): a promising source of novel antiviral drugs]]** ​ | 
 +|  **888800000157** ​ |  **[[https://​doi.org/​10.1101/​2020.11.24.393629|10.1101/​2020.11.24.393629]]** ​ |  Wang X (2020) ​ | **[[https://​thebiogrid.org/​226410/​publication|Double Lock of a Potent Human Monoclonal Antibody against SARS-CoV-2]]** ​ | 
 +|  **888800000158** ​ |  **[[https://​doi.org/​10.1101/​2020.12.03.409441|10.1101/​2020.12.03.409441]]** ​ |  Rossetti GG (2020) ​ | **[[https://​thebiogrid.org/​226411/​publication|Identification of low micromolar SARS-CoV-2 Mpro inhibitors from hits identified by in silico screens]]** ​ | 
 +|  **888800000159** ​ |  **[[https://​doi.org/​10.1101/​2020.11.11.378018|10.1101/​2020.11.11.378018]]** ​ |  Eberle RJ (2020) ​ | **[[https://​thebiogrid.org/​226412/​publication|The repurposed drugs suramin and quinacrine inhibit cooperatively in vitro SARS-CoV-2 3CLpro]]** ​ | 
 +|  **888800000160** ​ |  **[[https://​doi.org/​10.1101/​2020.11.12.378422|10.1101/​2020.11.12.378422]]** ​ |  Guenther S (2020) ​ | **[[https://​thebiogrid.org/​226413/​publication|Inhibition of SARS-CoV-2 main protease by allosteric drug-binding]]** ​ | 
 +|  **888800000161** ​ |  **[[https://​doi.org/​10.1101/​2020.12.06.412759|10.1101/​2020.12.06.412759]]** ​ |  Calistri A (2020) ​ | **[[https://​thebiogrid.org/​226414/​publication|The new generation hDHODH inhibitor MEDS433 hinders the in vitro replication of SARS-CoV-2]]** ​ | 
 +|  **888800000162** ​ |  **[[https://​doi.org/​10.1101/​2020.12.03.409318|10.1101/​2020.12.03.409318]]** ​ |  Bertoglio F (2020) ​ | **[[https://​thebiogrid.org/​226415/​publication|A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients by phage display is binding to the ACE2-RBD interface and is tolerant to known RBD mutations]]** ​ | 
 +|  **888800000163** ​ |  **[[https://​doi.org/​10.1101/​2020.11.06.368191|10.1101/​2020.11.06.368191]]** ​ |  Kraus A (2020) ​ | **[[https://​thebiogrid.org/​226416/​publication|A zebrafish model for COVID-19 recapitulates olfactory and cardiovascular pathophysiologies caused by SARS-CoV-2]]** ​ |
 
covid/unpublished.txt · Last modified: 2021/04/24 15:17 by biogridadmin