Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
covid:unpublished [2020/07/02 16:05]
biogridadmin
covid:unpublished [2020/08/05 13:14]
biogridadmin
Line 19: Line 19:
 |  **888800000012** ​ |  **[[https://​doi.org/​10.1101/​2020.03.31.019216|10.1101/​2020.03.31.019216]]** ​ |  Liang Q (2020) ​ | **[[https://​thebiogrid.org/​221199/​publication|Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis]]** ​ | |  **888800000012** ​ |  **[[https://​doi.org/​10.1101/​2020.03.31.019216|10.1101/​2020.03.31.019216]]** ​ |  Liang Q (2020) ​ | **[[https://​thebiogrid.org/​221199/​publication|Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis]]** ​ |
 |  **888800000013** ​ |  **[[https://​doi.org/​10.1101/​2020.04.15.042085|10.1101/​2020.04.15.042085]]** ​ |  Bestle D (2020) ​ | **[[https://​thebiogrid.org/​221402/​publication|TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets]]** ​ | |  **888800000013** ​ |  **[[https://​doi.org/​10.1101/​2020.04.15.042085|10.1101/​2020.04.15.042085]]** ​ |  Bestle D (2020) ​ | **[[https://​thebiogrid.org/​221402/​publication|TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets]]** ​ |
-|  **888800000014** ​ |  **[[https://​doi.org/​10.1101/​2020.04.09.033233|10.1101/​2020.04.09.033233]]** ​ |  Jin Z (2020) ​ | **[[https://​thebiogrid.org/​221403/​publication|Structural basis for the inhibition of COVID-19 virus main protease by carmofur, an antineoplastic drug]]** ​ | 
-|  **888800000015** ​ |  **[[https://​doi.org/​10.1101/​2020.04.08.032763|10.1101/​2020.04.08.032763]]** ​ |  Yin W (2020) ​ | **[[https://​thebiogrid.org/​221404/​publication|Structural Basis for the Inhibition of the RNA-Dependent RNA Polymerase from SARS-CoV-2 by Remdesivir]]** ​ | 
 |  **888800000016** ​ |  **[[https://​doi.org/​10.1101/​2020.04.14.042010|10.1101/​2020.04.14.042010]]** ​ |  Chi X (2020) ​ | **[[https://​thebiogrid.org/​221405/​publication|Humanized Single Domain Antibodies Neutralize SARS-CoV-2 by Targeting Spike Receptor Binding Domain]]** ​ | |  **888800000016** ​ |  **[[https://​doi.org/​10.1101/​2020.04.14.042010|10.1101/​2020.04.14.042010]]** ​ |  Chi X (2020) ​ | **[[https://​thebiogrid.org/​221405/​publication|Humanized Single Domain Antibodies Neutralize SARS-CoV-2 by Targeting Spike Receptor Binding Domain]]** ​ |
 |  **888800000017** ​ |  **[[https://​doi.org/​10.1101/​2020.04.06.20055475|10.1101/​2020.04.06.20055475]]** ​ |  Ye L (2020) ​ | **[[https://​thebiogrid.org/​221565/​publication|Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor]]** ​ | |  **888800000017** ​ |  **[[https://​doi.org/​10.1101/​2020.04.06.20055475|10.1101/​2020.04.06.20055475]]** ​ |  Ye L (2020) ​ | **[[https://​thebiogrid.org/​221565/​publication|Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor]]** ​ |
Line 40: Line 38:
 |  **888800000033** ​ |  **[[https://​doi.org/​10.1101/​2020.05.01.20077743|10.1101/​2020.05.01.20077743]]** ​ |  Wu Y (2020) ​ | **[[https://​thebiogrid.org/​221836/​publication|A non-competing pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2]]** ​ | |  **888800000033** ​ |  **[[https://​doi.org/​10.1101/​2020.05.01.20077743|10.1101/​2020.05.01.20077743]]** ​ |  Wu Y (2020) ​ | **[[https://​thebiogrid.org/​221836/​publication|A non-competing pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2]]** ​ |
 |  **888800000034** ​ |  **[[https://​doi.org/​10.1101/​2020.05.03.074914|10.1101/​2020.05.03.074914]]** ​ |  Liu X (2020) ​ | **[[https://​thebiogrid.org/​221959/​publication|Neutralizing Antibodies Isolated by a site-directed Screening have Potent Protection on SARS-CoV-2 Infection]]** ​ | |  **888800000034** ​ |  **[[https://​doi.org/​10.1101/​2020.05.03.074914|10.1101/​2020.05.03.074914]]** ​ |  Liu X (2020) ​ | **[[https://​thebiogrid.org/​221959/​publication|Neutralizing Antibodies Isolated by a site-directed Screening have Potent Protection on SARS-CoV-2 Infection]]** ​ |
 +
 +^  Custom ID  ^  DOI  ^  AUTHOR ​ ^ DATASET ​ ^
 +|  **888800000002** ​ |  **[[https://​doi.org/​10.1101/​2020.03.29.20041962|10.1101/​2020.03.29.20041962]]** ​ |  Gao T (2020) ​ | **[[https://​thebiogrid.org/​221112/​publication|Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation]]** ​ |
 +|  **888800000003** ​ |  **[[https://​doi.org/​10.1101/​2020.02.16.951723|10.1101/​2020.02.16.951723]]** ​ |  Sun C (2020) ​ | **[[https://​thebiogrid.org/​221178/​publication|SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development]]** ​ |
 +|  **888800000004** ​ |  **[[https://​doi.org/​10.1101/​2020.03.16.994236|10.1101/​2020.03.16.994236]]** ​ |  Procko E (2020) ​ | **[[https://​thebiogrid.org/​221182/​publication|The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2]]**  |
 +|  **888800000005** ​ |  **[[https://​doi.org/​10.1101/​2020.03.14.988345|10.1101/​2020.03.14.988345]]** ​ |  Wang K (2020) ​ | **[[https://​thebiogrid.org/​221183/​publication|SARS-CoV-2 invades host cells via a novel route: CD147-spike protein]]** ​ |
 +|  **888800000006** ​ |  **[[https://​doi.org/​10.1101/​2020.02.17.951848|10.1101/​2020.02.17.951848]]** ​ |  Zhou Q (2020) ​ | **[[https://​thebiogrid.org/​221185/​publication|Structure of dimeric full-length human ACE2 in complex with B0AT1]]** ​ |
 +|  **888800000007** ​ |  **[[https://​doi.org/​10.1101/​2020.02.26.964882|10.1101/​2020.02.26.964882]]** ​ |  Jin Z (2020) ​ | **[[https://​thebiogrid.org/​221186/​publication|Structure of Mpro from COVID-19 virus and discovery of its inhibitors [DEPRECATED PUBLICATION]]]** ​ |
 +|  **888800000008** ​ |  **[[https://​doi.org/​10.1101/​2020.03.29.013490|10.1101/​2020.03.29.013490]]** ​ |  Wang C (2020) ​ | **[[https://​thebiogrid.org/​221195/​publication|Lectin-like Intestinal Defensin Inhibits 2019-nCoV Spike binding to ACE2]]** ​ |
 +|  **888800000009** ​ |  **[[https://​doi.org/​10.1101/​2020.03.25.996348|10.1101/​2020.03.25.996348]]** ​ |  Dai W (2020) ​ | **[[https://​thebiogrid.org/​221196/​publication|Structure-Based Design, Synthesis and Biological Evaluation of Peptidomimetic Aldehydes as a Novel Series of Antiviral Drug Candidates Targeting the SARS-CoV-2 Main Protease]]** ​ |
 +|  **888800000010** ​ |  **[[https://​doi.org/​10.1101/​2020.03.15.992883|10.1101/​2020.03.15.992883]]** ​ |  Joyce MG (2020) ​ | **[[https://​thebiogrid.org/​221197/​publication|A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein]]** ​ |
 +|  **888800000011** ​ |  **[[https://​doi.org/​10.1101/​2020.03.16.993386|10.1101/​2020.03.16.993386]]** ​ |  Gao Y (2020) ​ | **[[https://​thebiogrid.org/​221198/​publication|Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral drug target]]** ​ |
 +|  **888800000012** ​ |  **[[https://​doi.org/​10.1101/​2020.03.31.019216|10.1101/​2020.03.31.019216]]** ​ |  Liang Q (2020) ​ | **[[https://​thebiogrid.org/​221199/​publication|Virus-host interactome and proteomic survey of PMBCs from COVID-19 patients reveal potential virulence factors influencing SARS-CoV-2 pathogenesis]]** ​ |
 +|  **888800000013** ​ |  **[[https://​doi.org/​10.1101/​2020.04.15.042085|10.1101/​2020.04.15.042085]]** ​ |  Bestle D (2020) ​ | **[[https://​thebiogrid.org/​221402/​publication|TMPRSS2 and furin are both essential for proteolytic activation and spread of SARS-CoV-2 in human airway epithelial cells and provide promising drug targets]]** ​ |
 +|  **888800000016** ​ |  **[[https://​doi.org/​10.1101/​2020.04.14.042010|10.1101/​2020.04.14.042010]]** ​ |  Chi X (2020) ​ | **[[https://​thebiogrid.org/​221405/​publication|Humanized Single Domain Antibodies Neutralize SARS-CoV-2 by Targeting Spike Receptor Binding Domain]]** ​ |
 +|  **888800000017** ​ |  **[[https://​doi.org/​10.1101/​2020.04.06.20055475|10.1101/​2020.04.06.20055475]]** ​ |  Ye L (2020) ​ | **[[https://​thebiogrid.org/​221565/​publication|Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor]]** ​ |
 +|  **888800000018** ​ |  **[[https://​doi.org/​10.1101/​2020.04.19.049643|10.1101/​2020.04.19.049643]]** ​ |  Zeng X (2020) ​ | **[[https://​thebiogrid.org/​221566/​publication|Blocking antibodies against SARS-CoV-2 RBD isolated from a phage display antibody library using a competitive biopanning strategy]]** ​ |
 +|  **888800000019** ​ |  **[[https://​doi.org/​10.1101/​2020.04.23.057265|10.1101/​2020.04.23.057265]]** ​ |  Peng Q (2020) ​ | **[[https://​thebiogrid.org/​221567/​publication|Structural and biochemical characterization of nsp12-nsp7-nsp8 core polymerase complex from COVID-19 virus]]** ​ |
 +|  **888800000020** ​ |  **[[https://​doi.org/​10.1101/​2020.04.22.046565|10.1101/​2020.04.22.046565]]** ​ |  Liu Y (2020) ​ | **[[https://​thebiogrid.org/​221568/​publication|Functional and Genetic Analysis of Viral Receptor ACE2 Orthologs Reveals Broad Potential Host Range of SARS-CoV-2]]** ​ |
 +|  **888800000021** ​ |  **[[https://​doi.org/​10.1101/​2020.04.21.053017|10.1101/​2020.04.21.053017]]** ​ |  Walker A (2020) ​ | **[[https://​thebiogrid.org/​221569/​publication|Enisamium is a small molecule inhibitor of the influenza A virus and SARS-CoV-2 RNA polymerases]]** ​ |
 +|  **888800000022** ​ |  **[[https://​doi.org/​10.1101/​2020.04.17.047498|10.1101/​2020.04.17.047498]]** ​ |  Rosas Lemus M (2020) ​ | **[[https://​thebiogrid.org/​221570/​publication|The crystal structure of nsp10-nsp16 heterodimer from SARS CoV-2in complex with S-adenosylmethionine]]** ​ |
 +|  **888800000023** ​ |  **[[https://​doi.org/​10.1101/​2020.04.19.048710|10.1101/​2020.04.19.048710]]** ​ |  Zhao X (2020) ​ | **[[https://​thebiogrid.org/​221571/​publication|Broad and differential animal ACE2 receptor usage by SARS-CoV-2]]** ​ |
 +|  **888800000024** ​ |  **[[https://​doi.org/​10.1101/​2020.04.26.061705|10.1101/​2020.04.26.061705]]** ​ |  Viswanathan T (2020) ​ | **[[https://​thebiogrid.org/​221642/​publication|Structural Basis of RNA Cap Modification by SARS-CoV-2 Coronavirus]]** ​ |
 +|  **888800000025** ​ |  **[[https://​doi.org/​10.1101/​2020.04.29.068890|10.1101/​2020.04.29.068890]]** ​ |  Rut W (2020) ​ | **[[https://​thebiogrid.org/​221777/​publication|Activity profiling of SARS-CoV-2-PLpro protease provides structural framework for anti-COVID-19 drug design]]** ​ |
 +|  **888800000026** ​ |  **[[https://​doi.org/​10.1101/​2020.04.27.063180|10.1101/​2020.04.27.063180]]** ​ |  Hillen HS (2020) ​ | **[[https://​thebiogrid.org/​221778/​publication|Structure of replicating SARS-CoV-2 polymerase]]** ​ |
 +|  **888800000027** ​ |  **[[https://​doi.org/​10.1101/​2020.04.29.068098|10.1101/​2020.04.29.068098]]** ​ |  Sun Z (2020) ​ | **[[https://​thebiogrid.org/​221779/​publication|Mass spectrometry analysis of newly emerging coronavirus HCoV-19 spike S protein and human ACE2 reveals camouflaging glycans and unique post-translational modifications]]** ​ |
 +|  **888800000028** ​ |  **[[https://​doi.org/​10.1101/​2020.05.03.073080|10.1101/​2020.05.03.073080]]** ​ |  Vuong W (2020) ​ | **[[https://​thebiogrid.org/​221830/​publication|Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication]]** ​ |
 +|  **888800000029** ​ |  **[[https://​doi.org/​10.1101/​2020.05.02.20086876|10.1101/​2020.05.02.20086876]]** ​ |  Zhang D (2020) ​ | **[[https://​thebiogrid.org/​221831/​publication|Ultra-fast and onsite interrogation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in environmental specimens via surface enhanced Raman scattering (SERS)]]** ​ |
 +|  **888800000030** ​ |  **[[https://​doi.org/​10.1101/​2020.05.05.079202|10.1101/​2020.05.05.079202]]** ​ |  Huo J (2020) ​ | **[[https://​thebiogrid.org/​221832/​publication|Neutralization of SARS-CoV-2 by destruction of the prefusion Spike]]** ​ |
 +|  **888800000031** ​ |  **[[https://​doi.org/​10.1101/​2020.05.06.079830|10.1101/​2020.05.06.079830]]** ​ |  Zha L (2020) ​ | **[[https://​thebiogrid.org/​221833/​publication|Development of a COVID-19 vaccine based on the receptor binding domain displayed on virus-like particles]]** ​ |
 +|  **888800000032** ​ |  **[[https://​doi.org/​10.1101/​2020.05.02.043554|10.1101/​2020.05.02.043554]]** ​ |  Gunther S (2020) ​ | **[[https://​thebiogrid.org/​221835/​publication|Catalytic cleavage of HEAT and subsequent covalent binding of the tetralone moiety by the SARS-CoV-2 main protease]]** ​ |
 +|  **888800000033** ​ |  **[[https://​doi.org/​10.1101/​2020.05.01.20077743|10.1101/​2020.05.01.20077743]]** ​ |  Wu Y (2020) ​ | **[[https://​thebiogrid.org/​221836/​publication|A non-competing pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2]]** ​ |
 +|  **888800000034** ​ |  **[[https://​doi.org/​10.1101/​2020.05.03.074914|10.1101/​2020.05.03.074914]]** ​ |  Liu X (2020) ​ | **[[https://​thebiogrid.org/​221959/​publication|Neutralizing Antibodies Isolated by a site-directed Screening have Potent Protection on SARS-CoV-2 Infection]]** ​ |
 +|  **888800000035** ​ |  **[[https://​doi.org/​10.1101/​2020.05.21.109157|10.1101/​2020.05.21.109157]]** ​ |  Lui I (2020) ​ | **[[https://​thebiogrid.org/​222215/​publication|Trimeric SARS-CoV-2 Spike interacts with dimeric ACE2 with limited intra-Spike avidity]]** ​ |
 +|  **888800000036** ​ |  **[[https://​doi.org/​10.1101/​2020.05.21.107870|10.1101/​2020.05.21.107870]]** ​ |  Partridge LJ (2020) ​ | **[[https://​thebiogrid.org/​222216/​publication|Unfractionated heparin potently inhibits the binding of SARS-CoV-2 spike protein to a human cell line]]** ​ |
 +|  **888800000037** ​ |  **[[https://​doi.org/​10.1101/​2020.05.13.092478|10.1101/​2020.05.13.092478]]** ​ |  Chiodo F (2020) ​ | **[[https://​thebiogrid.org/​222217/​publication|Novel ACE2-Independent Carbohydrate-Binding of SARS-CoV-2 Spike Protein to Host Lectins and Lung Microbiota]]** ​ |
 +|  **888800000038** ​ |  **[[https://​doi.org/​10.1101/​2020.05.12.091298|10.1101/​2020.05.12.091298]]** ​ |  Seydoux E (2020) ​ | **[[https://​thebiogrid.org/​222218/​publication|Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual]]** ​ |
 +|  **888800000039** ​ |  **[[https://​doi.org/​10.1101/​2020.05.21.107565|10.1101/​2020.05.21.107565]]** ​ |  Zang J (2020) ​ | **[[https://​thebiogrid.org/​222219/​publication|Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement]]** ​ |
 +|  **888800000040** ​ |  **[[https://​doi.org/​10.1101/​2020.05.12.092171|10.1101/​2020.05.12.092171]]** ​ |  Zhou X (2020) ​ | **[[https://​thebiogrid.org/​222220/​publication|Structure of SARS-CoV-2 main protease in the apo state reveals the inactive conformation]]** ​ |
 +|  **888800000041** ​ |  **[[https://​doi.org/​10.1101/​2020.06.17.156455|10.1101/​2020.06.17.156455]]** ​ |  Stukalov A (2020) ​ | **[[https://​thebiogrid.org/​222410/​publication|Multi-level proteomics reveals host-perturbation strategies of SARS-CoV-2 and SARS-CoV]]** ​ |
 +|  **888800000042** ​ |  **[[https://​doi.org/​10.1101/​2020.06.05.135921|10.1101/​2020.06.05.135921]]** ​ |  Bertoglio F (2020) ​ | **[[https://​thebiogrid.org/​222602/​publication|SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface]]** ​ |
 +|  **888800000043** ​ |  **[[https://​doi.org/​10.1101/​2020.06.05.135699|10.1101/​2020.06.05.135699]]** ​ |  Moustaqil M (2020) ​ | **[[https://​thebiogrid.org/​222603/​publication|SARS-CoV-2 proteases cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species and the search for reservoir hosts.]]** ​ |
 +|  **888800000044** ​ |  **[[https://​doi.org/​10.1101/​2020.06.17.157982|10.1101/​2020.06.17.157982]]** ​ |  Starr TN (2020) ​ | **[[https://​thebiogrid.org/​222652/​publication|Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding]]** ​ |
 +|  **888800000045** ​ |  **[[https://​doi.org/​10.1101/​2020.06.05.134114|10.1101/​2020.06.05.134114]]** ​ |  Daly JL (2020) ​ | **[[https://​thebiogrid.org/​222653/​publication|Neuropilin-1 is a host factor for SARS-CoV-2 infection]]** ​ |
 +|  **888800000046** ​ |  **[[https://​doi.org/​10.1101/​2020.06.17.158121|10.1101/​2020.06.17.158121]]** ​ |  Cubuk J (2020) ​ | **[[https://​thebiogrid.org/​222654/​publication|The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA]]** ​ |
 +|  **888800000047** ​ |  **[[https://​doi.org/​10.1101/​2020.06.09.142794|10.1101/​2020.06.09.142794]]** ​ |  Yang Y (2020) ​ | **[[https://​thebiogrid.org/​222655/​publication|The utility of native MS for understanding the mechanism of action of repurposed therapeutics in COVID-19: heparin as a disruptor of the SARS-CoV-2 interaction with its host cell receptor.]]** ​ |
 +|  **888800000048** ​ |  **[[https://​doi.org/​10.1101/​2020.06.02.130161|10.1101/​2020.06.02.130161]]** ​ |  Hanke L (2020) ​ | **[[https://​thebiogrid.org/​222656/​publication|An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction]]** ​ |
 +|  **888800000049** ​ |  **[[https://​doi.org/​10.1101/​2020.06.17.156471|10.1101/​2020.06.17.156471]]** ​ |  Conceicao C (2020) ​ | **[[https://​thebiogrid.org/​222704/​publication|The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins]]** ​ |
 +|  **888800000050** ​ |  **[[https://​doi.org/​10.1101/​2020.06.07.138677|10.1101/​2020.06.07.138677]]** ​ |  Luan X (2020) ​ | **[[https://​thebiogrid.org/​222705/​publication|Structure Basis for Inhibition of SARS-CoV-2 by the Feline Drug GC376]]** ​ |
 +|  **888800000051** ​ |  **[[https://​doi.org/​10.1101/​2020.06.02.129098|10.1101/​2020.06.02.129098]]** ​ |  Lv Z (2020) ​ | **[[https://​thebiogrid.org/​222706/​publication|Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody]]** ​ |
 +|  **888800000052** ​ |  **[[https://​doi.org/​10.1101/​2020.06.06.137513|10.1101/​2020.06.06.137513]]** ​ |  Lou Y (2020) ​ | **[[https://​thebiogrid.org/​222707/​publication|Cross-neutralization antibodies against SARS-CoV-2 and RBD mutations from convalescent patient antibody libraries]]** ​ |
 +|  **888800000053** ​ |  **[[https://​doi.org/​10.1101/​2020.05.27.118117|10.1101/​2020.05.27.118117]]** ​ |  Douangamath A (2020) ​ | **[[https://​thebiogrid.org/​222708/​publication|Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease]]** ​ |
 +|  **888800000054** ​ |  **[[https://​doi.org/​10.1101/​2020.06.16.155812|10.1101/​2020.06.16.155812]]** ​ |  Li J (2020) ​ | **[[https://​thebiogrid.org/​222709/​publication|Crystal structure of SARS-CoV-2 main protease in complex with a Chinese herb inhibitor shikonin]]** ​ |
 +|  **888800000055** ​ |  **[[https://​doi.org/​10.1101/​2020.06.15.153387|10.1101/​2020.06.15.153387]]** ​ |  Beddingfield B (2020) ​ | **[[https://​thebiogrid.org/​222710/​publication|The Integrin Binding Peptide, ATN-161, as a Novel Therapy for SARS-CoV-2 Infection]]** ​ |
 
covid/unpublished.txt · Last modified: 2021/04/24 15:17 by biogridadmin