Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
covid:unpublished [2021/01/08 17:06]
biogridadmin
covid:unpublished [2021/04/24 15:17] (current)
biogridadmin
Line 131: Line 131:
 |  **888800000162** ​ |  **[[https://​doi.org/​10.1101/​2020.12.03.409318|10.1101/​2020.12.03.409318]]** ​ |  Bertoglio F (2020) ​ | **[[https://​thebiogrid.org/​226415/​publication|A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients by phage display is binding to the ACE2-RBD interface and is tolerant to known RBD mutations]]** ​ | |  **888800000162** ​ |  **[[https://​doi.org/​10.1101/​2020.12.03.409318|10.1101/​2020.12.03.409318]]** ​ |  Bertoglio F (2020) ​ | **[[https://​thebiogrid.org/​226415/​publication|A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients by phage display is binding to the ACE2-RBD interface and is tolerant to known RBD mutations]]** ​ |
 |  **888800000163** ​ |  **[[https://​doi.org/​10.1101/​2020.11.06.368191|10.1101/​2020.11.06.368191]]** ​ |  Kraus A (2020) ​ | **[[https://​thebiogrid.org/​226416/​publication|A zebrafish model for COVID-19 recapitulates olfactory and cardiovascular pathophysiologies caused by SARS-CoV-2]]** ​ | |  **888800000163** ​ |  **[[https://​doi.org/​10.1101/​2020.11.06.368191|10.1101/​2020.11.06.368191]]** ​ |  Kraus A (2020) ​ | **[[https://​thebiogrid.org/​226416/​publication|A zebrafish model for COVID-19 recapitulates olfactory and cardiovascular pathophysiologies caused by SARS-CoV-2]]** ​ |
 +|  **888800000164** ​ |  **[[https://​doi.org/​10.1101/​2020.12.23.424149|10.1101/​2020.12.23.424149]]** ​ |  Noske G (2020) ​ | **[[https://​thebiogrid.org/​226619/​publication|A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process]]** ​ |
 +|  **888800000165** ​ |  **[[https://​doi.org/​10.1101/​2020.12.18.423427|10.1101/​2020.12.18.423427]]** ​ |  Zhao Y (2020) ​ | **[[https://​thebiogrid.org/​226620/​publication|SARS-CoV-2 spike protein interacts with and activates TLR4]]** ​ |
 +|  **888800000166** ​ |  **[[https://​doi.org/​10.1101/​2020.12.19.423537|10.1101/​2020.12.19.423537]]** ​ |  Kitamura N (2020) ​ | **[[https://​thebiogrid.org/​226621/​publication|An expedited approach towards the rationale design of non-covalent SARS-CoV-2 main protease inhibitors with in vitro antiviral activity]]** ​ |
 +|  **888800000167** ​ |  **[[https://​doi.org/​10.1101/​2020.12.23.424171|10.1101/​2020.12.23.424171]]** ​ |  Schmitz A (2020) ​ | **[[https://​thebiogrid.org/​226622/​publication|A SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection in vitro by an RBD independent mechanism]]** ​ |
 +|  **888800000168** ​ |  **[[https://​doi.org/​10.1101/​2020.12.31.424961|10.1101/​2020.12.31.424961]]** ​ |  Chen Z (2021) ​ | **[[https://​thebiogrid.org/​226623/​publication|Comprehensive analysis of the host-virus interactome of SARS-CoV-2]]** ​ |
 +|  **888800000169** ​ |  **[[https://​doi.org/​10.1101/​2020.12.21.423721|10.1101/​2020.12.21.423721]]** ​ |  Avolio E (2020) ​ | **[[https://​thebiogrid.org/​226624/​publication|The SARS-CoV-2 spike protein disrupts the cooperative function of human cardiac pericytes - endothelial cells through CD147 receptor-mediated signalling: a potential non-infective mechanism of COVID-19 microvascular disease]]** ​ |
 +|  **888800000170** ​ |  **[[https://​doi.org/​10.1101/​2020.12.19.423584|10.1101/​2020.12.19.423584]]** ​ |  Garcia-Dorival I (2020) ​ | **[[https://​thebiogrid.org/​226625/​publication|Identification of NPC1 as a novel SARS-CoV-2 intracellular target]]** ​ |
 +|  **888800000171** ​ |  **[[https://​doi.org/​10.1101/​2020.12.26.424423|10.1101/​2020.12.26.424423]]** ​ |  Durdagi S (2020) ​ | **[[https://​thebiogrid.org/​226626/​publication|The neutralization effect of Montelukast on SARS-CoV-2 is shown by multiscale in silico simulations and combined in vitro studies]]** ​ |
 +|  **888800000172** ​ |  **[[https://​doi.org/​10.1101/​2020.12.18.423415|10.1101/​2020.12.18.423415]]** ​ |  Madan T (2020) ​ | **[[https://​thebiogrid.org/​226627/​publication|A recombinant fragment of Human surfactant protein D binds Spike protein and inhibits infectivity and replication of SARS-CoV-2 in clinical samples]]** ​ |
 +|  **888800000173** ​ |  **[[https://​doi.org/​10.1101/​2020.12.29.424698|10.1101/​2020.12.29.424698]]** ​ |  Yang X (2020) ​ | **[[https://​thebiogrid.org/​226628/​publication|An Ultrasensitive Biosensor for Quantifying the Interaction of SARS-CoV-2 and Its Receptor ACE2 in Cells and in vitro]]** ​ |
 +|  **888800000174** ​ |  **[[https://​doi.org/​10.1101/​2020.12.20.422820|10.1101/​2020.12.20.422820]]** ​ |  Fiedler S (2020) ​ | **[[https://​thebiogrid.org/​226629/​publication|In vitro measurements of protein-protein interactions show that antibody affinity governs the inhibition of SARS-CoV-2 spike/ACE2 binding in convalescent serum]]** ​ |
 +|  **888800000175** ​ |  **[[https://​doi.org/​10.1101/​2020.12.22.422708|10.1101/​2020.12.22.422708]]** ​ |  Shepley-McTaggart A (2020) ​ | **[[https://​thebiogrid.org/​226630/​publication|SARS-CoV-2 Envelope (E) Protein Interacts with PDZ-Domain-2 of Host Tight Junction Protein ZO1]]** ​ |
 +|  **888800000176** ​ |  **[[https://​doi.org/​10.1101/​2020.12.18.423418|10.1101/​2020.12.18.423418]]** ​ |  Hsieh M-H (2020) ​ | **[[https://​thebiogrid.org/​226631/​publication|Human Surfactant Protein D Binds S1 and Receptor Binding Domain of Spike protein and acts as an entry inhibitor of SARS-CoV-2 Pseudotyped viral particles in vitro]]** ​ |
 +|  **888800000177** ​ |  **[[https://​doi.org/​10.1101/​2020.12.16.422677|10.1101/​2020.12.16.422677]]** ​ |  Kuzikov M (2020) ​ | **[[https://​thebiogrid.org/​226632/​publication|Identification of inhibitors of SARS-CoV-2 3CL-Pro enzymatic activity using a small molecule in-vitro repurposing screen]]** ​ |
 +|  **888800000178** ​ |  **[[https://​doi.org/​10.1101/​2020.12.30.424801|10.1101/​2020.12.30.424801]]** ​ |  Woo HG (2020) ​ | **[[https://​thebiogrid.org/​226633/​publication|Pharmacophore-based peptide biologics neutralize SARS-CoV-2 S1 and deter S1-ACE2 interaction in vitro]]** ​ |
 +|  **888800000179** ​ |  **[[https://​doi.org/​10.1101/​2020.12.26.424422|10.1101/​2020.12.26.424422]]** ​ |  Xu W (2020) ​ | **[[https://​thebiogrid.org/​226634/​publication|Extensive High-Order Complexes within SARS-CoV-2 Proteome Revealed by Compartmentalization-Aided Interaction Screening]]** ​ |
 +|  **888800000180** ​ |  **[[https://​doi.org/​10.1101/​2020.12.09.417741|10.1101/​2020.12.09.417741]]** ​ |  Armstrong L (2020) ​ | **[[https://​thebiogrid.org/​226635/​publication|Characterization of protease activity of Nsp3 from SARS-CoV-2 and its in vitro inhibition by nanobodies]]** ​ |
 +|  **888800000181** ​ |  **[[https://​doi.org/​10.1101/​2020.12.29.424682|10.1101/​2020.12.29.424682]]** ​ |  Kuznetsov A (2020) ​ | **[[https://​thebiogrid.org/​226636/​publication|ACE2 peptide fragment interacts with several sites on the SARS-CoV-2 spike protein S1]]** ​ |
 +|  **888800000182** ​ |  **[[https://​doi.org/​10.1101/​2021.01.21.427657|10.1101/​2021.01.21.427657]]** ​ |  Choi R (2021) ​ | **[[https://​thebiogrid.org/​226858/​publication|High-throughput screening of the ReFRAME, Pandemic Box, and COVID Box drug repurposing libraries against SARS-CoV2 nsp15 endoribonuclease to identify small-molecule inhibitors of viral activity.]]** ​ |
 +|  **888800000183** ​ |  **[[https://​doi.org/​10.1101/​2021.01.12.426388|10.1101/​2021.01.12.426388]]** ​ |  Kneller DW (2021) ​ | **[[https://​thebiogrid.org/​226859/​publication|Inhibitor Binding Modulates Protonation States in the Active Site of SARS-CoV-2 Main Protease]]** ​ |
 +|  **888800000184** ​ |  **[[https://​doi.org/​10.1101/​2021.01.17.427000|10.1101/​2021.01.17.427000]]** ​ |  Wan Y (2021) ​ | **[[https://​thebiogrid.org/​226860/​publication|Comprehensive mapping of SARS-CoV-2 interactions in vivo reveals functional virus-host interactions]]** ​ |
 +|  **888800000185** ​ |  **[[https://​doi.org/​10.1101/​2021.01.19.427194|10.1101/​2021.01.19.427194]]** ​ |  Tian R (2021) ​ | **[[https://​thebiogrid.org/​226861/​publication|BRD2 inhibition blocks SARS-CoV-2 infection in vitro by reducing transcription of the host cell receptor ACE2]]** ​ |
 +|  **888800000186** ​ |  **[[https://​doi.org/​10.1101/​2021.01.11.426269|10.1101/​2021.01.11.426269]]** ​ |  Zhu X (2021) ​ | **[[https://​thebiogrid.org/​226862/​publication|Cryo-EM Structure of the N501Y SARS-CoV-2 Spike Protein in Complex with a Potent Neutralizing Antibody]]** ​ |
 +|  **888800000187** ​ |  **[[https://​doi.org/​10.1101/​2021.01.05.425478|10.1101/​2021.01.05.425478]]** ​ |  Kamle S (2021) ​ | **[[https://​thebiogrid.org/​226863/​publication|Chitinase 3-like-1 is a Therapeutic Target That Mediates the Effects of Aging in COVID-19]]** ​ |
 +|  **888800000188** ​ |  **[[https://​doi.org/​10.1101/​2021.01.14.426695|10.1101/​2021.01.14.426695]]** ​ |  Carnell GW (2021) ​ | **[[https://​thebiogrid.org/​226864/​publication|SARS-CoV-2 spike protein arrested in the closed state induces potent neutralizing responses]]** ​ |
 +|  **888800000189** ​ |  **[[https://​doi.org/​10.1101/​2021.01.13.21249429|10.1101/​2021.01.13.21249429]]** ​ |  Hultstrom M (2021) ​ | **[[https://​thebiogrid.org/​226865/​publication|Elevated Angiopoietin-2 inhibits thrombomodulin-mediated anticoagulation in critically ill COVID-19 patients]]** ​ |
 +|  **888800000190** ​ |  **[[https://​doi.org/​10.1101/​2021.01.19.427324|10.1101/​2021.01.19.427324]]** ​ |  Suryadevara N (2021) ​ | **[[https://​thebiogrid.org/​226866/​publication|Neutralizing and protective human monoclonal antibodies recognizing the N-terminaldomain of the SARS-CoV-2 spike protein]]** ​ |
 +|  **888800000191** ​ |  **[[https://​doi.org/​10.1101/​2021.01.11.426218|10.1101/​2021.01.11.426218]]** ​ |  Rapp M (2021) ​ | **[[https://​thebiogrid.org/​226867/​publication|Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class]]** ​ |
 +|  **888800000192** ​ |  **[[https://​doi.org/​10.1101/​2021.01.07.425745|10.1101/​2021.01.07.425745]]** ​ |  Saramago M (2021) ​ | **[[https://​thebiogrid.org/​226868/​publication|New targets for drug design: Importance of nsp14/nsp10 complex formation for the 3'​-5'​ exoribonucleolytic activity on SARS-CoV-2]]** ​ |
 +|  **888800000193** ​ |  **[[https://​doi.org/​10.1101/​2021.01.12.426042|10.1101/​2021.01.12.426042]]** ​ |  Siniavin AE (2021) ​ | **[[https://​thebiogrid.org/​226869/​publication|Snake venom phospholipases A2 possess a strong virucidal activity against SARS-CoV-2 in vitro and block the cell fusion mediated by spike glycoprotein interaction with the ACE2 receptor]]** ​ |
 +|  **888800000194** ​ |  **[[https://​doi.org/​10.1101/​2021.01.07.425806|10.1101/​2021.01.07.425806]]** ​ |  Bell BN (2021) ​ | **[[https://​thebiogrid.org/​226870/​publication|Neutralizing antibodies targeting the SARS-CoV-2 receptor binding domain isolated from a naive human antibody library]]** ​ |
 +|  **888800000195** ​ |  **[[https://​doi.org/​10.1101/​2021.01.20.427368|10.1101/​2021.01.20.427368]]** ​ |  Carlos AJ (2021) ​ | **[[https://​thebiogrid.org/​226871/​publication|GRP78 binds SARS-CoV-2 Spike protein and ACE2 and GRP78 depleting antibody blocks viral entry and infection in vitro]]** ​ |
 +|  **888800000196** ​ |  **[[https://​doi.org/​10.1101/​2021.01.05.425516|10.1101/​2021.01.05.425516]]** ​ |  Verma R (2021) ​ | **[[https://​thebiogrid.org/​226872/​publication|RNA-protein interaction analysis of SARS-CoV-2 5'- and 3'​-untranslated regions identifies an antiviral role of lysosome-associated membrane protein-2]]** ​ |
 +|  **888800000197** ​ |  **[[https://​doi.org/​10.1101/​2021.01.29.428890|10.1101/​2021.01.29.428890]]** ​ |  Berndt AJ (2021) ​ | **[[https://​thebiogrid.org/​227046/​publication|Recombinant production of a functional SARS-CoV-2 spike receptor binding domain in the green algae Chlamydomonas reinhardtii]]** ​ |
 +|  **888800000198** ​ |  **[[https://​doi.org/​10.1101/​2021.01.29.428834|10.1101/​2021.01.29.428834]]** ​ |  Bayarri-Olmos R (2021) ​ | **[[https://​thebiogrid.org/​227047/​publication|The SARS-CoV-2 Y453F mink variant displays a striking increase in ACE-2 affinity but does not challenge antibody neutralization]]** ​ |
 +|  **888800000199** ​ |  **[[https://​doi.org/​10.1101/​2021.02.03.429601|10.1101/​2021.02.03.429601]]** ​ |  Prahlad J (2021) ​ | **[[https://​thebiogrid.org/​227048/​publication|Bacterial expression and purification of functional recombinant SARS-CoV-2 spike receptor binding domain]]** ​ |
 +|  **888800000200** ​ |  **[[https://​doi.org/​10.1101/​2021.02.03.429625|10.1101/​2021.02.03.429625]]** ​ |  Khalili Yazdi A (2021) ​ | **[[https://​thebiogrid.org/​227049/​publication|A high-throughput radioactivity-based assay for screening SARS-CoV-2 nsp10-nsp16 complex]]** ​ |
 +|  **888800000201** ​ |  **[[https://​doi.org/​10.1101/​2021.02.01.429176|10.1101/​2021.02.01.429176]]** ​ |  Caillet-Saguy C (2021) ​ | **[[https://​thebiogrid.org/​227050/​publication|Host PDZ-containing proteins targeted by SARS-Cov-2]]** ​ |
 +|  **888800000202** ​ |  **[[https://​doi.org/​10.1101/​2021.02.11.430866|10.1101/​2021.02.11.430866]]** ​ |  Liu H (2021) ​ | **[[https://​thebiogrid.org/​227051/​publication|A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection]]** ​ |
 +|  **888800000203** ​ |  **[[https://​doi.org/​10.1101/​2021.02.02.429311|10.1101/​2021.02.02.429311]]** ​ |  Ma H (2021) ​ | **[[https://​thebiogrid.org/​227052/​publication|Potent in vitro Neutralization of SARS-CoV-2 by Hetero-bivalent Alpaca Nanobodies Targeting the Spike Receptor-Binding Domain]]** ​ |
 +|  **888800000204** ​ |  **[[https://​doi.org/​10.1101/​2021.02.19.424337|10.1101/​2021.02.19.424337]]** ​ |  Devkota K (2021) ​ | **[[https://​thebiogrid.org/​227053/​publication|Probing the SAM Binding Site of SARS-CoV-2 nsp14 in vitro Using SAM Competitive Inhibitors Guides Developing Selective bi-substrate Inhibitors]]** ​ |
 +|  **888800000205** ​ |  **[[https://​doi.org/​10.1101/​2021.02.13.431008|10.1101/​2021.02.13.431008]]** ​ |  Shen Z (2021) ​ | **[[https://​thebiogrid.org/​227054/​publication|Potent,​ Novel SARS-CoV-2 PLpro Inhibitors Block Viral Replication in Monkey and Human Cell Cultures]]** ​ |
 +|  **888800000206** ​ |  **[[https://​doi.org/​10.1101/​2021.02.17.431617|10.1101/​2021.02.17.431617]]** ​ |  Bollavaram K (2021) ​ | **[[https://​thebiogrid.org/​227055/​publication|Multiple Sites on SARS-CoV-2 Spike Protein are Susceptible to Proteolysis by Cathepsins B, K, L, S, and V]]**  |
 +|  **888800000207** ​ |  **[[https://​doi.org/​10.1101/​2021.01.31.429023|10.1101/​2021.01.31.429023]]** ​ |  Minasov G (2021) ​ | **[[https://​thebiogrid.org/​227056/​publication|Mn2+ coordinates Cap-0-RNA to align substrates for efficient 2'​-O-methyl transfer by SARS-CoV-2 nsp16]]** ​ |
 +|  **888800000208** ​ |  **[[https://​doi.org/​10.1101/​2021.02.03.429355|10.1101/​2021.02.03.429355]]** ​ |  Graham C (2021) ​ | **[[https://​thebiogrid.org/​227057/​publication|Impact of the B.1.1.7 variant on neutralizing monoclonal antibodies recognizing diverse epitopes on SARS-CoV-2 Spike]]** ​ |
 +|  **888800000209** ​ |  **[[https://​doi.org/​10.1101/​2021.02.09.430451|10.1101/​2021.02.09.430451]]** ​ |  Spelios MG (2021) ​ | **[[https://​thebiogrid.org/​227058/​publication|A novel antibody against the furin cleavage site of SARS-CoV-2 spike protein: effects on proteolytic cleavage and ACE2 binding]]** ​ |
 +|  **888800000210** ​ |  **[[https://​doi.org/​10.1101/​2021.02.02.428884|10.1101/​2021.02.02.428884]]** ​ |  Zhang G (2021) ​ | **[[https://​thebiogrid.org/​227059/​publication|The basis of a more contagious 501Y.V1 variant of SARS-COV-2]]** ​ |
 +|  **888800000211** ​ |  **[[https://​doi.org/​10.1101/​2021.02.16.431021|10.1101/​2021.02.16.431021]]** ​ |  Arutyunova E (2021) ​ | **[[https://​thebiogrid.org/​227060/​publication|N-Terminal finger stabilizes the reversible feline drug GC376 in SARS-CoV-2 Mpro]]** ​ |
 +|  **888800000212** ​ |  **[[https://​doi.org/​10.1101/​2021.02.07.429299|10.1101/​2021.02.07.429299]]** ​ |  Gu C (2021) ​ | **[[https://​thebiogrid.org/​227061/​publication|A human antibody with blocking activity to RBD proteins of multiple SARS-CoV-2 variants including B.1.351 showed potent prophylactic and therapeutic efficacy against SARS-CoV-2 in rhesus macaques]]** ​ |
 +|  **888800000213** ​ |  **[[https://​doi.org/​10.1101/​2021.02.04.429751|10.1101/​2021.02.04.429751]]** ​ |  Slavin M (2021) ​ | **[[https://​thebiogrid.org/​227062/​publication|Targeted in situ cross-linking mass spectrometry and integrative modeling reveal the architectures of Nsp1, Nsp2, and Nucleocapsid proteins from SARS-CoV-2]]** ​ |
 +|  **888800000214** ​ |  **[[https://​doi.org/​10.1101/​2021.02.08.430344|10.1101/​2021.02.08.430344]]** ​ |  Zhao H (2021) ​ | **[[https://​thebiogrid.org/​227063/​publication|Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids]]** ​ |
 +|  **888800000215** ​ |  **[[https://​doi.org/​10.1101/​2021.02.14.431117|10.1101/​2021.02.14.431117]]** ​ |  Tian F (2021) ​ | **[[https://​thebiogrid.org/​227064/​publication|Mutation N501Y in RBD of Spike Protein Strengthens the Interaction between COVID-19 and its Receptor ACE2]]** ​ |
 +|  **888800000216** ​ |  **[[https://​doi.org/​10.1101/​2021.02.17.431755|10.1101/​2021.02.17.431755]]** ​ |  Zhao Y (2021) ​ | **[[https://​thebiogrid.org/​227065/​publication|SARS-CoV-2 nucleocapsid protein dually regulates innate immune responses]]** ​ |
 
covid/unpublished.txt · Last modified: 2021/04/24 15:17 by biogridadmin